D-Optimal Designs for Second-Order Response Surface Models with Qualitative Factors

نویسندگان

چکیده

Central composite design (CCD) is widely applied in many fields to construct a second-order response surface model with quantitative factors help increase the precision of estimated model. When an experiment also includes qualitative factors, effects between and should be taken into consideration. In present paper, D-optimal designs are investigated for models where interact with, respectively, linear effects, or 2-factor interactions quadratic factors. It shown that, at each level, corresponding consists three portions as CCD, i.e. cube design, axial center points, but different weights. An example about chemical study used demonstrate how obtained here may both more efficiently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Robust Response-Surface Designs for Quantitative and Qualitative Factors

Alphabet Source Coding Theorem Revisited En-hui Yang and Zhen Zhang * University of Waterloo, Ontario CANADA, e-mail: [email protected] **University of Southern California, Los Angeles, CA 90089, USA, [email protected] The abstract alphabet source coding theorem is revisited. For coding at a fixed rate level, it is shown that for any fixed rate R > 0 and any memoryless abstract alphab...

متن کامل

New D-optimal designs of order 110

We give two new D-optimal designs of order 110.

متن کامل

Optimal Designs for Mixed-Effects Models with Random Nested Factors

The problem of experimental design for the purpose of estimating the fixed effects and the variance components corresponding to random nested factors is a widely applicable problem in industry. Random nested factors arise from quantity designations such as lot or batch and from sampling and measurement procedures. We introduce a new class of designs, called assembled designs, where all the nest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of data science

سال: 2021

ISSN: ['1680-743X', '1683-8602']

DOI: https://doi.org/10.6339/jds.201104_09(2).0001